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Abstract. Recently a basis-set-superposition-error-free
second-order perturbation theory was introduced based
on the “‘chemical Hamiltonian approach’ providing the
full antisymmetry of all wave functions by using second
quantization. Subsequently, the ‘“Heitler—London™
interaction energy corresponding to the sum of the zero-
and first-order perturbational energy terms was decom-
posed into different physically meaningful components,
like electrostatics, exchange and overlap effects. The
first-order wave function obtained in the framework of
this perturbation theory also consists of terms having
clear physical significance: intramolecular correlation,
polarization, charge transfer, dispersion and combined
polarization—charge transfer excitations. The second-
order energy, however, does not represent a simple sum
of the respective contributions, owing to the intermo-
lecular overlap. Here we propose an approximate energy
decomposition scheme by defining some ‘““‘partial Hy-
lleraas functionals” corresponding to the different
physically meaningful terms of the first-order wave
functions. The sample calculations show that at large
and intermediate intermolecular distances the total
second-order intermolecular interaction energy contri-
bution is practically equal to the sum of these “physical”
terms, while at shorter distances the overlap-caused
interferences become of increasing importance.
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1 Introduction
One may get a deeper insight in the physics of

intermolecular interactions if the calculated interaction
energy can be decomposed into physically meaningful
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terms. Such a decomposition scheme has been intro-
duced at the self-consistent-field (SCF) level of theory by
Kitaura and Morokuma [1] and Umeyama and Moro-
kuma [2]. Analogously, it is customary to introduce
polarization, dispersion, etc. energy components in the
framework of “‘symmetry-adapted perturbation theory”
(SAPT) [3, 4]. A detailed analysis of the second-order
energy components has also been given in the determi-
nant-based intermolecular PT for overlapping systems
introduced by Hayes and Stone [5, 6].

In the recent work [7] we have considered the simplest
“Heitler—-London™ approximation, in which one com-
putes the energy of the single determinant wave function
of the supermolecule, built up by using the unperturbed
monomer SCF orbitals. This very simple scheme permits
one to account qualitatively for the leading interactions
present in a hydrogen-bonded system, giving an energy
which roughly corresponds to the terms of “ESX” type
in the nomenclature of Kitaura and Morokuma [1] and
Umeyama and Morokuma [2] (see also Ref. [5]). By
using Lowdin’s pairing theorem, we have succeeded in
giving the explicit analytical expression for this “Heitler—
London” energy and we decomposed it into a sum
of different physically relevant contributions such as
electrostatics, exchange, overlap effects, etc. [7].

The “Heitler—London” energy, in turn, represents the
sum of the zero- and first-order energies in the frame-
work of the second-order basis-set-superposition-error-
(BSSE)-free PT of intermolecular interactions which we
have recently developed [8, 9] by using second quanti-
zation and applying the so-called “chemical Hamiltoni-
an approach” (CHA) [10] to eliminate BSSE. In this
theory the use of the second quantization formalism
ensures that all the wave functions are automatically
antisymmetric with respect to interchanges of all elec-
trons — including those between the interacting mono-
mers. Usually, there is a dilemma that the wave function
is either correctly antisymmetric or represents an eigen-
function of the unperturbed Hamiltonian — which is
hard to resolve without second quantization. Second
quantization permits the perturbative calculation of
intermolecular interactions to be realized in a fully



rigorous manner, without using any nonphysical (i.e. not
completely antisymmetrized) wave functions. In this
sense, such a second-quantization-based PT can be
considered as the conceptually best approach to the
problem SAPT is devoted to solve — as stressed by
Surjan [11], the interaction operator used in the CHA
formalism is the second quantized counterpart of the L?
interaction operator used in SAPT.!

In the PT considered (it may be denoted CHA-PT2)
the zero-order Hamiltonian is the sum of the free
monomer Fockians, and the energy is computed in the
framework of the “CHA with conventional energy”
scheme [15], in which the BSSE-free CHA Hamiltonian
is used to obtain the wave function excluding any BSSE
effects on it, and then the conventional Hamiltonian is
used to compute the energy. In this manner one obtains
the total energy of the system up to second order as
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where the first (“‘Heitler-London”) term represents the
sum of zero- and first-order energy components, written
as the expectation value of the total Hamiltonian over
the unperturbed zero-order wave function [8]. J, is the
second-order energy contribution, given by the Hy-
lleraas-type functional for a non-Hermitian unperturbed
Hamiltonian [16]. It represents a generalization of the
usual Hylleraas functionals [17] and can be obtained by
expanding in series the expectation value of the energy
with the zero- and first-order wave functions and
conserving terms up to second order. As our PT is
based on the BSSE-free CHA theory, the interaction
energy is obtained from Eq. (1) by subtracting the SCF
energies of the two monomers, each calculated in the
respective free monomer basis set.

+.J, (1)

I There is, in fact, also another dilemma which is usually not even
formulated explicitly. The use of a finite basis set defines a model
Hamiltonian, the exact solution of which can be obtained (at least
in principle) by solving the relevant full configuration interaction
(CI) problem or can be approximated by using the appropriate
methods of quantum chemistry. If the system consists of two
weakly interacting monomers, then it is a quite natural approach to
find the approximate solutions by building up a PT which starts
from the Hartree—Fock (HF) solutions of the free monomers and
converges to the full CI energy value of the supermolecule. Such a
PT has been proposed, for example, by Kvasnicka et al. [12] by
using orthogonalized orbitals - also see [13, 14]. The results of such
a PT (similarly to the calculations performed directly at the
supermolecule level) are “‘contaminated” by BSSE — one may, of
course perform ‘“‘ghost orbital” calculations for the monomers to
obtain a posteriori counterpoise-corrected interaction energies. On
the other hand, it is known that SAPT gives interaction energy
values which are a priori free of BSSE. However, SAPT is
conceptually unable to get the BSSE-uncorrected interaction
energies, which is not only a drawback from the formal mathe-
matical point of view, but also limits the generalization of SAPT for
describing strong (intramolecular) interactions. Our formalism
permits the development of both BSSE-free and BSSE-uncorrected
versions of the intermolecular PT, depending on whether the CHA
analysis of the Hamiltonian is invoked or not for eliminating the
terms causing BSSE; here we concentrate on the BSSE-free CHA
version, but the relevant second-order energy formulae were given
in the Appendix of Ref. [8] for the case when BSSE is not separated
out from the Hamiltonian.
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As pointed out in Ref. [9], the first-order wave func-
tion of the CHA-PT2 consists of terms having clear
physical significance: intramolecular correlation, polar-
ization, dispersion, etc; however, the second-order en-
ergy Jo represents a simple sum of these effects only in
the asymptotic region of large intermolecular distances,
where all the orbitals can be considered orthogonal. At
intermediate distances, however, intermolecular overlap
is not negligible anymore and owing to this overlap one
cannot perform a quite strict decomposition of the sec-
ond-order interaction energy into ‘‘physical” compo-
nents. Nevertheless, as will be seen, an approximate
decomposition is often possible. Accordingly, here we
propose a scheme in which one computes some ““partial
Hylleraas functionals™ corresponding to each physically
distinguishable term of the first-order wave function and
checks in which cases the sum of the latter approximates
well the total second-order energy contribution. Obvi-
ously, if this is not the case and the overlap-caused in-
terference terms between the different physical effects are
too large, one cannot assign any simple interpretation to
the second-order interaction energy values obtained.

The aim of the present work is to investigate in some
detail the possibility of such an energy decomposition
and to perform some sample calculations by using dif-
ferent basis sets for some typical hydrogen-bonded sys-
tems. We discuss that our perturbation method and
decomposition scheme have some similarities with those
of Hayes and Stone [5, 6], but they are not identical with
them. In addition, our theory significantly differs from
SAPT. The basic difference is in the fact that we use a
properly antisymmetrized unperturbed wave function
which is also the eigenfunction of the unperturbed
Hamiltonian. (This is possible owing to our use of the
second quantized formalism.) At the same time, SAPT
usually applies the “weak symmetry forcing” approxi-
mation, i.e. introduces the intermolecular antisymmet-
rization only when the energy is calculated (but not the
wave function), and several other simplifications should
also be introduced from a practical point of view (the
“single exchange” approximation and recurring to the
supermolecule HF wave functions with counterpoise
correction). Our formalism does not contain any
approximations except cutting the wave function after
the first order and energy after the second.

2 The CHA-PT2 energy formula and its decomposition
2.1 The energy formula

The first-order or ‘“Heitler-London” energy term in
Eq. (1) is the energy corresponding to the wave function
obtained by antisymmetrizing the unperturbed wave
functions of the monomers put at a given (finite)
distance from each other. As the monomers are treated
at the HF level, this antisymmetrized wave function is
still a single determinant. Its energy can be computed
very simply, by orthonormalizing the unperturbed
monomer orbitals ¢,. Alternatively, one can use the
analytical expressions we have derived for this energy
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and its different physical components [7]. We shall not
discuss this term here in any detail.

The second-order energy contribution in the CHA-
PT2 framework is given by the generalized Hylleraas
functional J,,
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introduced in Ref. [16]. Here Hi is the total Hamiltonian
of the supermolecule, ¥ = H — H® is the perturbation,
H° being the zero-order effective one-electron Hamilto-
nian combining the HF problems of both free monomers
[8]. Furthermore, ¥y is the unperturbed wave function,
Ey is the zero-order energy, QO is the projection operator
on the orthogonal complement to ¥y and y is the first-
order CHA wave function [8].

2.2 Components of the first-order wave function

In order to obtain the second-order energy contribution,
one has to calculate the first-order CHA wave function
1), which is [8, 9]

1 occ  virt
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where (A < B) indicates that all terms with monomers
A and B interchanged should be added. |¥}) and [¥}])
are singly and doubly excited determinants in terms
of the original occupied and virtual monomer orbitals
®;, @, etc., and V“‘“X is an auxiliary operator, defined
through its matrix element as
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We use the notation [ab||cd] for the usual differences of
the two-electron Coulomb and exchange integrals in the
[12|12] convention and the tilde denotes the biorthogo-
nal counterparts of the respective monomer molecular
orbitals.

One can see upon inspection that the first-order wave
function (Eq. 3) is a sum of terms of different, well-
defined physical meaning:

X> = |X>intrafcorr. + |X>p01 + |X>CT + |X>disp + |X>p017CT : (5>

Here, [1)inra_corr. describes the intramolecular correla-
tion of the free monomers:

occ  virt
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Note that the unperturbed wave functions are built of
the single HF determinants of the monomers, so the
intramonomer correlation is also contained in the
second-order energy we are calculating. However, when
computing intermolecular interaction energies, we can
extract the correlation energy of the free monomers and
deal only with the change of the intramonomer corre-
lation taking place during the complex formation.
(Although all the coefficients in Eq. (6) are the same as
those in the free monomers, the corresponding second-
order correlation energy may change owing to the
intermolecular overlap.)

Considering the second term in Eq. (3), one should
distinguish the cases in which the virtual orbital ¢, is on
the same monomer as the occupied orbital ¢; (p € A) or
on another monomer (p € B). The former type obviously
corresponds to excitations of polarization type, the latter
one describes charge transfers (CT) between the mono-
mers:
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The third term in Eq. (3) describes the conventional
dispersion-type excitations if both excitations have local
character, i.e. the two virtual orbitals belong to different
monomers (¢, € A; ¢, € B), similarly to the occupied
orbitals from Wthh they are excited:

occ occ virt virt @q”l}
Pq
T 3) 90 9 Sl

i€A jeB peA qeB
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In the cases when both virtual orbitals are on the same
monomer (¢,, ¢, € A) the third term in Eq. (3) de-
scribes conﬁguratlons in which there is a simultaneous
polarization of one monomer and a CT to it from the
other one. This corresponds to the combined “polariza-
tion—CT”” component of |y):

occ occ virt
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Although both CT and polarization are one-electron
effects, this term originates from two-electron excitations,
soitis not included in the SCF-type energy analyses [1, 2].
At the same time, the presence of a CT effect causes this
term to be absent also in the asymptotic dispersion-type
expansions. Nevertheless, it seems that one cannot
attribute this term to some “‘interference” of polarization
and CT effects, as there is a respective independent
component |y)pol—cT in the first-order wave function |y).
Experience (vide infra) shows that in some cases this term
can be of comparable importance with |y) ot

In the work of Hayes and Stone [5, 6] all these exci-
tations are listed as well as two others which do not



appear here because of the genuinely BSSE-free char-
acter of our formalism. Hayes and Stone [5, 6] also
considered these terms as approximately compensated in
the assumed “‘ghost orbital” calculations and therefore
they also eventually omitted them. As Hayes and Stone
[5, 6] did not use the BSSE-free CHA Hamiltonian, the
BSSE on the CT terms is handled by performing actual
“ghost orbital” calculations. They also omitted the
terms describing intramonomer correlation, which do
not contribute (at least to a first approximation) to the
intermolecular interaction energy. Despite some simi-
larities, their theory is significantly different from ours: it
is based on a Hermitian unperturbed Hamiltonian which
is diagonal for the determinants composed of the dif-
ferent monomer orbitals, without having them as ei-
genfunctions. Our theory is based on a non-Hermitian
Hamiltonian for which these determinants are (right)
eigenfunctions, but it is not diagonal in their subspace.

2.3 Components of the second-order energy

In the case of an ordinary second-order PT, different
terms of the first-order wave function give additive
contributions to the resulting second-order energy. This
is not our case, however, because the intramolecular
overlap causes interferences between the different exci-
tations. Moreover, an excited state which is orthogonal
to the ground state in a free molecule may become
nonorthogonal to the latter if the system is extended by
an interacting partner molecule, the ground state of
which has nonzero overlap with both the ground state
and excited states of the first molecule. (Analogously,
molecular states which were noninteracting may acquire
nonzero interaction matrix elements.) This fact causes
different quantities of intramonomer character (includ-
ing intramonomer correlation energy) to depend on the
position of the second interacting molecule.

According to the previous discussion, the second-or-
der energy, calculated with our first-order wave function
(Eq. 3), does not represent a simple sum of different
physical terms which can be attributed to the compo-
nents of the first-order wave function, listed earlier,
however, one can substitute Egs. (6), (7), (8), (9) and
(10) one by one into Eq. (2) of the generalized Hylleraas
functional and obtain in this manner some ‘‘partial
Hylleraas functionals”, which have well-defined physical
meaning: polarization, CT, intramonomer correlation,
dispersion and the combined polarization—CT term as
introduced earlier. These terms may or may not be of
real physical significance depending on whether or not
their sum approximates well the resulting J, value of the
Hylleraas functional (Eq. 2), calculated by using the
total first-order wave function |y) defined in Eq. (3).

Owing to the nonorthogonality of the monomer
orbitals, the direct substitution of the first-order wave
function (Eq. 3) or its individual components (Egs. 6, 7,
8,9, 10) into the generalized Hylleraas functional (Eq. 2)
is not feasible. Instead, in Refs. [8, 9] we introduced an
auxiliary orthogonalized set ¥; of spin orbitals which
spans the same space as the original functions. This
permitted the explicit calculation of all the necessary
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matrix elements occurring in the PT. The same trans-
formations can be done for the different individual
components of the first-order wave function introduced
earlier; their explicit expressions in terms of 1J; and some
auxiliary coefficients are given in the Appendix. The
explicit formulae obtained for the respective “‘partial
Hylleraas functionals™ JJ o JET, JSISP and J§°17CT are
also given in the Appendix.

We assume that the “‘physical” value of the intra-
monomer_correlation is the second-order correlation
energy E A2 + EB2 , as calculated for the free monomers:
the changes of the intramonomer correlation, which
are due to the intermolecular overlap, are typical
interference effects. (Accordingly, we do not compute
any ‘“‘partial Hylleraas functionals” corresponding to
[1)intra—corr)- We also introduce the remainder term (de-
noted “‘cross-term”) describing all overlap-caused inter-
ferences as the difference of the total J, and of the
“physical” terms:

Jcrossfterm
2
=Jr— (Jfo1 R R S EQ) :
(11)

Our energy components differ in many respects from
those introduced in different versions of SAPT. In
particular, in contrast to SAPT our dispersion energy is
calculated by using the correctly antisymmetrized wave
function component (Eq. 9). It can be seen, however,
that the asymptotic behaviour of dispersion is the same
in the two theories.

3 Results and discussions

The computations were carried out using an SGI Power
challenge workstation. We utilized the HONDO-8 ab
initio package [18] for generating the integrals and for
the SCF calculations of the monomers. The energy
decomposition was performed using a modified version
of the CHA-PT2 code used in Refs. [8, 9].

We performed sample calculations for some of the
hydrogen-bonded complexes considered in Ref. [9]. The
basis sets (ranging from 6-31G to TZV**+4+) and sim-
plified geometries were also the same as in Ref. [9]. To
illustrate the energy decomposition scheme proposed in
the present paper, we selected four hydrogen-bonded
systems, H,O...H,O, H;0...HF, H;0...H;S and
NH;...NHj, and three basis sets, 6-31G, DZV and
TZV**++, and we discuss the results obtained in their
case in some detail. The systems selected range from
weak to strong hydrogen bonds. [For the water dimer
some calculations using the TZV(2d,2p) basis as de-
scribed in Ref. [19] were also performed.]

An overview of the results of the calculations is given
in Figs. 1, 2, 3 and 4: the total second-order energies are
compared with the ““Heitler—London” ones representing
the sum of the zero- and first-order PT contributions, the
resulting second-order interaction energy contribution J,
(actually J, of Eq. 2 with the intramolecular correlation
energies of the free monomers extracted) and its de-
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Fig. 1. Potential curves of the H,O...HF system calculated in three
different basis sets (6-31G, DZV, TZV**4++) as a function of the
hydrogen-bond length. The curves display the ‘“Heitler—London”

energy (Ey_1), the total second-order energy (E>), the second-order
energy correction (J,), the second-order “physical” term (szhys) and
the “cross-term” (Jsross—term)
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Fig. 2. Potential curves of the H,O...H,O system calculated in three different basis sets as a function of the hydrogen-bond length. The

notation of the curves is the same as for Fig. 1

composition into “physical” and interference (‘““cross’)
components.

All the curves indicate that the simplest first-order
(“Heitler—London”) level of theory gives a qualitatively
correct description of the hydrogen bond; however, the
bonding energies are strongly underestimated and the
equilibrium bond lengths are significantly shifted to
larger intermolecular distances. The difference between
the first- and second-order results is strongly basis- and
system-dependent, which is of course obvious because,
for instance, dispersion can be described appropriately
only by using significantly larger basis sets than those
which are needed to get good results at the SCF level.

At very large intermolecular separations, the overlap
tends to zero and the matrix K of Eq. (A1) approaches

the unit matrix. If matrix K equalled the unit matrix, the
different second-order energy contributions would be
strictly additive and the “‘cross-terms’ would vanish. We
can see that at large distances this limit is well ap-
proached for all basis sets considered; however, different
basis sets and hydrogen-bonded systems differ in that
respect whether this behaviour can be observed at the
large distances only or also around the equilibrium one.

For all basis sets, the total second-order interaction
energy is well approximated by the sum of the “physi-
cal” terms at distances which are larger than some
(system- and basis-dependent) value. The total second-
order contribution (J) behaves smoothly at all dis-
tances, while the sum of the “physical” contributions
(and thus the ‘‘cross-term” too) may exhibit quite
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Fig. 4. Potential curves of the NH;...NHj3 system calculated in three different basis sets as a function of the hydrogen-bond length. The

notation of the curves is the same as for Fig. 1

strange behaviour at shorter distances where the devia-
tion from J, is significant. This is especially the case for
basis sets containing diffuse functions: as the diffuse
functions spread over very large parts of the space, at
smaller intermolecular separations it becomes unphysi-
cal that they are formally assigned to either of the
interacting subsystems, and this leads to artifacts on the
curves describing the “physical” terms.

There seems to be no monotonous behaviour with the
improving basis sets: for instance, in the case of the
water dimer the use of the double-polarized basis set
TZV(2d,2p) exhibits a curve (Fig. 5) in which the total J,
is well approximated by the sum of the “physical”
component even at distances comparable with the
equilibrium one.

The individual energy components discussed pre-
viously for the asymptotic region are displayed in
Figs. 6,7, 8 and 9 at large intermolecular separations. At
distances larger than 5 or 6 A, the sum of the “physical”
energy components is not distinguishable from the true
second-order energy contribution, in accord with ex-
pectations. For basis sets not containing diffuse func-
tions the ‘“‘cross-term’ remains small even at shorter
distances. Again we observe qualitatively different be-
haviour for the basis sets containing diffuse functions for
which intermolecular overlap becomes considerable at
relatively larger distances, leading to more complex be-
haviour of the different energy components.

As expected, for the smaller basis sets dispersion and
polarization represent the most important second-order
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energetic effects at larger distances. The relative impor-
tance of them, however, strongly depends on the system
and basis set applied. At a much shorter distance a CT
component suddenly appears and this then exhibits a
very steep increase in absolute value with decreasing
intermolecular distance.

The “polarization—CT” energy contribution intro-
duced earlier represents a minor term only, and appears
only at even shorter distances. This explains why terms
of this type have not usually been considered in the

H,0 ... H,0

l- Triple Zeta(2d,2p) ]
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e ——
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6.0

Fig. 5. Potential curves of the H,0...H;O system calculated in the
TZV(2p, 2d) basis set as a function of the hydrogen-bond length.
The notation of the curves is the same as for Fig. 1

qualitative discussions of the intermolecular interac-
tions: these integrals defining the coefficients in the re-
spective terms of the first-order wave functions contain
an intermolecular “‘differential overlap”, which is negli-
gible where the interaction is dominated by the true
two-electron dispersion effects and becomes significant
only at distances usually characterized in terms of typical
one-electron effects such as polarization and CT.

For the calculations performed using the TZV**++
basis sets the asymptotic regime ends at larger distances.
The second-order energy contribution in this region is
again dominated by the dispersion and/or polarization
terms; however, no significant attractive CT components
are observed, but the combined polarization—CT terms
are relatively significant and the deviation from addi-
tivity is more pronounced at smaller distances.

Finally, we should note that the concept of CT terms
formally loses its meaning as the basis sets on the indi-
vidual molecules are increased and gradually become
applicable to describe the orbitals of the partner mole-
cule. However, it is known that there are a number of
more-or-less stable intermolecular systems which, fol-
lowing Mulliken [20], can physically best be characterized
as “CT complexes”. We think it may be of importance to
distinguish between such terms of the wave function in
which the electron transfer takes place to some valence-
like orbital and those in which there is an electron
transfer to an accidental atomic orbital, maybe of diffuse

type without any well-defined molecular character. Such
a distinction, however, would require some systematic
analysis of the first-order wave function from this
specifically ““‘chemical” point of view.

4 Conclusions

In Refs. [8, 9] a BSSE-free second-order PT was intro-
duced based on the CHA. Owing to the intermolecular
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Fig. 6. Energy components for the H,O...HF system calculated in
three different basis sets (6-31G, DZV, TZV**++) as functions of
the hydrogen-bond length. The curves display J,, the sum of the
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notation of the curves is the same as for Fig. 6

overlap, the second-order energy contribution does not
represent a simple sum of terms having clear physical
significance; however, the first-order wave function
consists of different physically distinguishable terms:
intramolecular correlation, polarization, CT, dispersion
and combined polarization—CT excitations. We per-
formed the energy decomposition by computing some
“partial Hylleraas functionals’. The sample calculations
show that at large and intermediate intermolecular
distances the total second-order intermolecular interac-
tion energy contribution is practically equal to the sum
of these physically meaningful terms, while at shorter
distances the overlap-caused interferences become of

increasing significance.

Acknowledgements. The authors acknowledge the partial financial
support of the Hungarian Research Fund (grants OTKA nos.

T25369, T29716 and C0020). A. V. is also indebted to grant
“Széchenyi” from the Hungarian Ministry of Culture. A. H.
acknowledges the invitation permitting her to work for 1 month
in the Department of Molecular Biophysics, German Cancer

Research Center, Heidelberg, Germany.

Appendix

We consider the orthogonalization transformation with
the matrix K, as specified in Refs. [§, 9].

¢y = Z Kipd
7

In terms of the new orbitals 9; the first-order wave
function (Eq. 3) can be written as [8, 9]

(A1)
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(ﬁ(kl||kl))}

)

(g(terl)polfCT

422(/3 tr||kl) + & (er|| k1) )| @, )}+(A<—>B) . (A2)

kg rt

|@y) is the unperturbed wave function and |®}) and |®;)

represent the singly and doubly excited configurations,

respectively, in terms of the auxiliary set of spin orbitals

{®;}. (0 is an unimportant phase factor which disappears
from any final expression.) The auxiliary quantities
oL (t)k), B(tr||kl) and E(tr||kl), computed from the
integrals over the unperturbed monomer spin orbitals
were defined in Ref. [§8]. For our present purposes, we
had to modify some of these definitions in order to
obtain separate terms corresponding to the different
physical components of the first-order wave function |y).
Essentially, we had to split the expressions of ./ (¢#|k) and
@(tr||k!) into terms in which the virtual orbitals are

summed over different monomers:

k occ virt K <p| VB > K71 A5
A (g =2 > K (A3)
i€eA peA &i
occ virt
4 _
i =33 e, Mg
icA peB &i
G(r||kD) i
occ  occ virt SO
- Z Z Z KK, 4y —1palli] ijlK
icA jEB \peA geB Ep T8y — & — ¢
virt ST
—palli]
K K, K K , AS
+ Z p q&p—l-sq—b,—&, 1 (AS)

PEB,gEA

occ  occ virt —[ﬁé”lj]
SSS(3 Kk
i€A jEB \peA geA teég— 8¢
N Z o WAl e (A6)
tpfrg il ik '
pEBgeB epteg—ei—¢& )

Equations (6), (7), (8), (9) and (10) of the first-order
wave function |y) can be obtained, if in Eq. (A2) one
uses only one set of the auxiliary quantities .71, %7 cT,
Gaisp OF Gpol—cT and sets all the others to zero, together
with the coefficients # contributing to |))ipa—_corr.- 1hen
one obtains the term of |y) which corresponds to the

subscript in question. | ;
The “partial Hylleraas functionals™ J5°, JST, J5*P

and JpOl €T are defined as follows

0ocC

=3 [ (1K) o -7 ()
k

X {@(Mk)pol +9’(klk)p01}

occ virt

33 [+ 7100y

x [2Fu+ (2(0K) po + 1l | (A7)

= [ A klK)er + (k) o]
k
x [D(klk)er + D (K[ o]

CT
JZ

occ virt
2.2 [

x [2F,k+( (tlk)er + Z(th)er)]

(tlk)er + (1) o1 ]
(A8)



dis |
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[ 1)+ Z KD g
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occ virt
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Kkl 1
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+ Z Z [(g(”Hkl)disp + (g_(terl)diSP}

k<l t<r
+ F (0l gip )|
(A9)

dlSp

Jpol CT Z[ (kl||kl) pol CT+9§(kl||kl)p0| CT}

where

Fye = (01| F|9)

k<l
XZ[ UHU pol— CT+j(kl||kl>pol CT:|

i<j

occ virt

+3°) [(g(ﬂnkz)pol_a+(5(tl||kl)pol_m}

ki1

ocC
2Ek+2( tJHkJ pol— CT+’/(t]||k])pol CT)‘|
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k<l t<r
X RO D[ 00r]+ (7 (tr||kD) oy 1
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(A10)

(A11)

and F is the usual Fock operator calculated by
orthogonalizing the unperturbed monomer orbitals.
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The quantities with horizontal bars are obtained from
the respective definitions by interchanging A and

B everywhere. (t|k)p01, 9 (t[k)CT, ﬁ(tr”kl)disp and
F (tr||kl)po_cr are defined in the same way as
the quantities .o/ (¢|k) pol’ oA (tk) s %(tr”kl)dhp and
C(tr||kl) por_c1o respectlvely, but without the energy
denominators.
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